Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 59(1): 24-36, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584341

RESUMO

Ranavirosis is a disease of high concern for amphibians due to widespread documentation of its lethal and sublethal impacts and its high transmission potential across populations and species. We investigated whether spotted salamander (Ambystoma maculatum) ranavirus prevalence and viral load were associated with habitat characteristics, genetic diversity, corticosterone levels, and body size. In 2015 and 2016, we sampled 34 recently created vernal pools in the Monongahela National Forest, West Virginia, USA. We collected tail clippings from 1,128 spotted salamander larvae and waterborne hormone samples from 436 of those larvae, along with eight environmental characteristics of the pools. Over the 2-yr period, we detected ranavirus in 62% of pools, with prevalence ranging from 0% to 63% (mean, 7.68%). Spotted salamander size was positively correlated with ranavirus presence and viral load; however, we did not find associations between ranavirus prevalence or viral load and habitat characteristics, spotted salamander genetic diversity, relatedness, effective number of breeders, or corticosterone levels. The widespread occurrence of ranavirus in the vernal pools illustrates the potential for rapid natural introduction of the pathogen to created wetlands. Managers could consider monitoring local distributions of ranavirus before creation of new vernal pools to guide strategic placement of the wetlands to minimize occurrence and prevalence of this pathogen.


Assuntos
Infecções por Vírus de DNA , Ranavirus , Animais , Ambystoma , Larva , Prevalência , West Virginia , Corticosterona , Infecções por Vírus de DNA/veterinária
2.
Ecol Evol ; 12(1): e8435, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127004

RESUMO

Over the past 20 years, the use of non-invasive hair snare surveys in wildlife research and management has become more prevalent. While these tools have been used to answer important research questions, these techniques often fail to gather information on elusive carnivores, such as bobcats (Lynx rufus). Due to the limited success of previous bobcat studies using hair snares which required active rubbing, this technique has largely fallen out of use, in favor of camera trapping. The goal of our study was to construct a novel, passive bobcat hair snare that could be deployed regardless of terrain or vegetation features, which would be effective for use in capture-recapture population estimation at a large spatial scale. This new hair snare was deployed in 1500 10-km2 cells across West Virginia (USA) between two sampling seasons (2015-2016). Collected hair samples were analyzed with newly developed mitochondrial DNA primers specifically for felids and qPCR to determine species of origin, with enough sensitivity to identify samples as small as two bobcat hairs. Over the two years of the study, a total of 378 bobcat detections were recorded from 42,000 trap nights of sampling, for an overall rate of 0.9 detections/100 trap nights-nearly 2-6 times greater than any previous bobcat hair snare study. While the overall number of recaptured animals was low (n = 9), continued development of this platform should increase its usefulness in capture-recapture studies.

3.
Ecol Evol ; 8(19): 9870-9879, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30386582

RESUMO

Hybridization is common in bird populations but can be challenging for management, especially if one of the two parent species is of greater conservation concern than the other. King rails (Rallus elegans) and clapper rails (R. crepitans) are two marsh bird species with similar morphologies, behaviors, and overlapping distributions. The two species are found along a salinity gradient with the king rail in freshwater marshes and the clapper in estuarine marshes. However, this separation is not absolute; they are occasionally sympatric, and there are reports of interbreeding. In Virginia, USA, both king and clapper rails are identified by the state as Species of Greater Conservation Need, although clappers are thought to be more abundant and king rails have a higher priority ranking. We used a mitochondrial DNA marker and 13 diagnostic nuclear single nucleotide polymorphisms (SNPs) to identify species, classify the degree of introgression, and explore the evolutionary history of introgression in two putative clapper rail focal populations along a salinity gradient in coastal Virginia. Genetic analyses revealed cryptic introgression with site-specific rates of admixture. We identified a pattern of introgression where clapper rail alleles predominate in brackish marshes. These results suggest clapper rails may be displacing king rails in Virginia coastal waterways, most likely as a result of ecological selection. As introgression can result in various outcomes from outbreeding depression to local adaptation, continued monitoring of these populations would allow further exploration of hybrid fitness and inform conservation management.

4.
J Fish Biol ; 93(5): 942-951, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30246341

RESUMO

Lake sturgeon Acipenser fulvescens populations show a variety of movement patterns that are poorly understood. To compare two migratory phenotypes of A. fulvescens in the St. Clair River, MI, USA, multiple data types were analysed. Individual fish were classified into migratory phenotypes based on acoustic telemetry data collected 2012-2015. Acipenser fulvescens consistently showed movement from the St. Clair River upriver into Lake Huron or downriver into Lake St. Clair. The two migratory phenotypes were then compared for differences in morphometrics, genetics and epigenetics. Morphological differences based on linear measurements were not detected between phenotypes. Microsatellite data from 11 loci suggested one population with no genetic differentiation between migratory phenotypes. Our epigenetic results indicated that the migratory phenotypes are differentially methylated (P < 0.05), thus epigenetics may be associated with migratory differences in A. fulvescens. Only one restriction site was identified to be driving the differential methylation (P < 0.05). While little evidence at neutral loci occurred for genetic differentiation of A. fulvescens, DNA methylation may play a role in the observed movement pattern variation. When combined with microsatellite and morphometric analyses, our results suggested that different migratory patterns may reflect phenotypic plasticity, allowing A. fulvescens to acclimate to short-term environmental variability. Without an integrated approach, the role of epigenetics in the migratory phenotype of A. fulvescens may have been overlooked. Further characterization of migratory phenotypes could be important for management to conserve behavioural variation across the distribution of A. fulvescens and for design of stocking guidelines.


Assuntos
Migração Animal , Metilação de DNA , Peixes/genética , Animais , Epigenômica , Peixes/anatomia & histologia , Peixes/fisiologia , Variação Genética , Lagos , Michigan , Repetições de Microssatélites , Fenótipo , Rios
5.
PLoS One ; 12(3): e0174269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28329005

RESUMO

Many hydroelectric dams have been in place for 50 - >100 years, which for most fish species means that enough generations have passed for fragmentation induced divergence to have accumulated. However, for long-lived species such as Lake Sturgeon, Acipenser fulvescens, it should be possible to discriminate between historical population structuring and contemporary gene flow and improve the broader understanding of anthropogenic influence. On the Winnipeg River, Manitoba, two hypotheses were tested: 1) Measureable quantities of former reservoir dwelling Lake Sturgeon now reside downstream of the Slave Falls Generating Station, and 2) genetically differentiated populations of Lake Sturgeon occur upstream and downstream, a result of historical structuring. Genetic methods based on ten microsatellite markers were employed, and simulations were conducted to provide context. With regards to contemporary upstream to downstream contributions, the inclusion of length-at-age data proved informative. Both pairwise relatedness and Bayesian clustering analysis substantiated that fast-growing outliers, apparently entrained after residing in the upstream reservoir for several years, accounted for ~15% of the Lake Sturgeon 525-750 mm fork length captured downstream. With regards to historical structuring, upstream and downstream populations were found to be differentiated (FST = 0.011, and 0.013-0.014 when fast-growing outliers were excluded), and heterozygosity metrics were higher for downstream versus upstream juveniles. Historical asymmetric (downstream) gene flow in the vicinity of the generating station was the most logical explanation for the observed genetic structuring. In this section of the Winnipeg River, construction of a major dam does not appear to have fragmented a previously panmictic Lake Sturgeon population, but alterations to habitat may be influencing upstream to downstream contributions in unexpected ways.


Assuntos
Peixes/genética , Fluxo Gênico/genética , Animais , Teorema de Bayes , Ecossistema , Genética Populacional/métodos , Lagos , Manitoba , Repetições de Microssatélites/genética , Rios
6.
BMC Genomics ; 9: 37, 2008 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-18218127

RESUMO

BACKGROUND: Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. RESULTS: Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. CONCLUSION: The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection.


Assuntos
Cnidários , Doenças dos Peixes/genética , Oncorhynchus mykiss/genética , Doenças Parasitárias em Animais/genética , Animais , Doenças dos Peixes/parasitologia , Perfilação da Expressão Gênica , Genoma , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...